978-1-4799-0698-7/13/$31.00 ©2013 IEEE

A Real-time data distribution scheme of MOMAT
for the Naval Combat System

Maksumov Bakir, Dwi Agung Nugroho, Yang Wei and Dong-Seong Kim
Networked Systems Lab, School of Electronic Engineering
Kumoh National Institute of Technology, South Korea
Email: {bakir, dwi.agung, yangwei, dskim}@kumoh.ac.kr

Abstract—The paper discusses MOMAT (Message Orientated
Modeling and Analysis Tools) which is designed and implemented
as middleware for performance of message oriented modeling
and analysis tools for naval combat system (NCS). NCS consists
of various large-scale components such as communication service
and data distributed service (DDS). Furthermore, MOMAT meets
requirements of NCS to support several versions of control such
as components, interfaces, messages and publisher/subscriber
paradigms. The MOMAT dealing with real-time data changes
using continuous query (CQ) to provide new result from the
database without issue same query repeatedly. However, a large
number of continuous queries may be executed simultaneously
over a high throughput of incoming data that may deteriorate
system performance and cause data (message) delay. Therefore
paper proposes a query split mechanism for performance im-
provement of retrieval in middleware systems.

The implementation result shows that our proposed query-split
management scheme significantly reduce workload of database
server and increase scalability of each application.

Index Terms—Data Distributed Service (DDS), MOMAT,
Query-split management scheme, MySQL database system, con-
tinuous query, NCS.

I. INTRODUCTION

The main purpose of warships is to accomplish the assigned
task by eliminating threats and attacks during the mission time.
For defense and control warships, it uses modern naval combat
system (NCS) such as: sensors, weapons, fire control systems,
guided missile and torpedo launchers as well as helicopter
support system. NCS provides an information for all different
situations in case of unpredictable enemy attack [1].

Middleware is one of important instrument to manage
a lot of heterogeneous and multiple data in real-time. Es-
pecially, data distribution service (DDS) which is usually
used in message oriented environments. In DDS, each node
has priority to publish-subscribe between DDS fundamental
components. To develop large-scale systems, many developers
participate in various projects and cooperate each other. Large-
scale systems are constituted of numerous components which
depend on configuration of NCS [2][3][4][5]. For example,
several developers have implemented numerous components
to NCS. During the procedure of implementation, if changes
are not properly applied to component, it is suboptimal to
support the version of each component. Therefore, it can cause
several problems that decrease the development efficiency.
To cover these problem, message orientated management and

268

analysis tool (MOMAT) is designed and implemented to
satisfy following requirement.

However, this application has some couple of problems such
as low scalability and limited ability of application. To process
a transaction continuously, the system needs to handle big
number of information due to the scale of the network. To
address this issue, the paper propose query-split management
scheme that adopted split and group operator to split queries
into small groups for small groups to improve the performance
of data retrieval in pub/sub system.

The remainder of this paper is organized as follows. Section
IT briefly explains message orientated modeling and analysis
tool’s (MOMAT) architecture and its performance. Section III
presents the theory of query-split management scheme and
its algorithm. Section IV present implementation and per-
formance analysis. Finally, we present conclusion and future
work in Section V.

II. SYSTEM MODEL
A. Design of MOMAT

MOMAT is designed as middleware which is developed by
Samsung Thales for managing the message of each compo-
nent. MOMAT provides a data-centric communication based
on DDS specification. MOMAT has a powerful user interface
and include many options to control message process. All
messages and components are controlled by the version such
as Subversion and concurrent version system (CVS). CVS is a
clientaserver free software revision control system in the field
of software development [6].

Publication Subscription

Messages

DB ‘

C#

Fig. 1. The architecture of MOMAT

Moreover, it provides a code generation function using
interface definition languages (IDL) which is supported by

ICTC 2013

MDIL library. Using these components (benefits) of MOMAT,
message communication and large-scale systems design can
be simplified. The MOMAT architecture consisted of four
main parts. For operate application C# language was used
that integrated with open source relation database management
system (RDBMS). Other components, messages and publica-
tion/subscription are shown in Fig. 1.

More detail explanation of the MOMAT architecture part as
follows:

o Components : All of the messages in the MOMAT, can
be manage based on components. The component is one
of the important item which are divided into 3 layers such
as software configuration item (CSCI), computer software
components (CSC), and computer software item (CSU).
These items gives opportunity to develop documents and
manages entire messages during the publish-subscribe
process. (Fig. 2). In other words, each component is
able to communicate with another component when it
participates in global data space to share the data form
sensor nodes.

e Messages : Each time when user creates a message, it
registers to publisher/subscriber. Moreover, it works for
user defined data structure for project and topic in DDS.

o Publication/Subscription : the publication/subscriber
is basic feature in MOMAT. Using this feature we can
communicate with each other using global data space
(Fig. 2).

Application

cscl

Pub/Sub

Fig. 2. Pub/Sub process using CSU, CSC and CSCI

B. Data communication of MOMAT

MOMAT topology is designed as client-server and peer
to peer architecture using distributed real-time data-centric
communication (Fig. 3). The architecture of MOMAT has
three main application forms which are shown in Fig. 4.
The initial process of aceess from login application is shown
in Fig. 4. The all information in application obtains from
database periodically using continous query procedure (Fig.
5). In MOMAT each information uploaded to the list in small
amount is for enhancing the performance of each application.
The important feature of MOMAT is to implement conti-
nous query between application and database storage system.
However, when hundreds of network nodes need to connect

to central database server to data retrieval, the performance
of application is significantly decrease and cause to server
overload.

Client
Computers

Database

server

Fig. 3. Network model of MOMAT
|’ Login |
=

‘ Project List ‘

L

‘ Admin page |

| User Interface |

.

Message
management
ey

I

[Publsub
management

‘ Visual wiev ‘

Fig. 4. The MOMAT view configuraion

To solve these problems queriesdsplit management scheme
is proposed by grouping multiple continuous queries using
group and split mechanism.

% RDBMS
=}

Fig. 5. Initialization procedure of MOMAT

| Initialization |

VA

Get user list

‘ Get user message |

C. Implementation design

The MOMAT is developed by C# language to provide
scalability. Fig. 6 shows task screen of MOMAT. As we can
see from the Fig. 6 pub/sub items and components are located
on the left side of the application. On the right side of the task
screen is attached functions as new message, user define data
type, topic or modify the message, check history message as
well as delete the message.

269

Fig. 6. Screenshot of task screen

III. QUERY-SPLIT MANAGEMENT SCHEME

A. Related works

The application of distributed system is wide with the rapid
development of the technology, such as military operation
systems, wireless and wired network and various telecommu-
nication systems. In these systems large numbers of data need
to handle continuously update data using continuous query
technique (CQ). To provide high performance for such systems
several methods was investigated. The grouping method using
query split scheme and query group optimization technique
was proposed to enhance scalability of the millions of data
(queries) [7].

Similar research work has focused on query optimization
problem where TelegrapCQ (TCQ) was proposed. TCQ is
focused on meeting the challenges that arise in handling large
streams of continuous queries over the high-volume, highly-
variable data stream.

B. Group optimization using labeling method

Based on query-split scheme strategy, we designed group
optimization process using labeling expression. A specific
implementation of labeling is shown in Fig. 8. For purposes
of demonstration, the MySQL based Data Manipulation Lan-
guage (DML) is used as an example. The MySQL query
in Fig. 8 represent query tree which retrieve information
from the database. The submission of the query request gives
opportunity to use labeling () method. An expression labeling
is created for selection predicates by dividing queries into
groups.

—
—

Split pmcess) Split process}

Select=<symbol*>

Select=<All symbols>

-

DDL/DML DDL/DML

Fig. 7. The split and grouping process

The dividing process of queries is shown in Fig. 7. Lower
part in each query represents a DML statement for such
information from the database. A new operator “query scans”
is added on the top of DML/DDL process after query parser.
The purpose of query scan is to sort between labeled and
ordinary queries. The query scans process allows queries with
same syntactic structure to be grouped together. Note that for
defining between labeling and ordinary query, the labeling
process use “*” (symbolx) in the syntax of the query. This
allows users to obtain only last updated attribute (column)
value from the database.

<Query=

<SFW>

S

SELECT <Attribute> FROM <Name> WHERE <Condition>

|
<Tuple>

<Last_update*> <Constant>

Fig. 8. The labeling of queries

C. Grouping process

The Group plan is the whole process of dividing queries for
groups. It is derived from common part of all multi-queries
and divided into small group. A group plan allows queries to
grouping in different constant [7]. Since the result of the split
computation contains results for all the queries in the group,
the results must be sent to the server for further processing.
The query-split scheme performs filtering by combining a
special Split operator with Grouping operator based on
constant multi-query value (Fig. 9).

split]

Grouping

| seLECT AY, A3......80
! |FrROM R, Rep. R
-..| |WHERE condition

Fig. 9. Query-split scheme using group plan process

The first Grouping operator obtains DML (data manipula-
tion language)/DDL (data definition language) query request
and combines it as a group. After group is established by
Grouping operator, it forwards to waiting list (buffer), until
previous query send by Split operator. The Split operator
distributes each query request for small groups to make it
easy to send. Moreover, query requests with the same constant
value are added to the same query group and share same
output stream. Because of Grouping operator combine all
query requests in one group and give same destination address,

270

the Split operator set up a new name of destination address
and distributes it to each query request.

In general, the number of active query groups should not
be increased more than the threshold. Because, in case of
overload, the system is not able to handle the big number
of query request. Therefore, all small groups are forwarded
to buffer and all of them stored in sequential order to control
their limitation.

D. Distribution process

In MOMAT’s network architecture, each node has some
connection directly to the storage node (SN) and several
neighbor nodes. For example when the node A searches for
certain information, it sends a query message (request) to its
storage node (SN). The SN is the main node of the system
where all data are stored in storage tables. In case of when
system launches split operator, it splits the query request for
small query groups and distributes it to the nodes A and B (Fig.
10). Each query group request contains keywords of searched
information. The node D that receives the query message from
its neighbor node, search it from its local storage system. After
message result is obtained by node D, it is forwarded directly
to node A for the final process. This approach achieves more
effective search performance compared to previous search
information in M OM AT system.

—9

Database

S
%A

|4— Query request; —p Search; ‘

5
L |
D

Fig. 10. An example of query routing process.

E. Algorithm

Algorithm 1 represents the query-split management algo-
rithm to increase the scalability of the distributed system.
From initial process, the system sets up query sequence
(Q1,Q2....Qn) before the main application starts. For exam-
ple in the algorithm, we consider a query request Q1 which
is scheduled independently. After the new query request is
established, Grouping process is launched by the system.
The purpose of Grouping process collects all queries as
sequence and make a group to save it in the buffer. During
the grouping process each query are (*) labeled by query scan
algorithm (Fig. 9) to enhance performance of continuous query
processing. After query scan process is done, the split query
function slices the obtained information for small optimal
groups < Q1= WHERE sybol ()= last-update, Qo= WHERE
sybol(x)= last-update;>, < Q1= szalue(l)’ Q2= Cvalue(2);>
and distribute it.

Algorithm 1 Query-split management algorithm
1: Initialize(Q1, Q2...Qy,)

. Start application

: @Q1=SELECT * FROM A;,A5,A5...A,, WHERE symbol

: Grouping process Ngpoup=Q1, @Q2...Qn

: Lunch query scan process

: Labeling process (x)

. Split query as group

¢ Qgroup(y=< Q1= WHERE sybol(*)= last-update, Qo=
WHERE sybol(x)= last-update>;

9: Qgroup(2)=< le C’ualue(l)’ Q2= Cvalue(2)>;

10: Send query

11: close

00 N N W B W N

IV. IMPLEMENTATION AND PERFORMANCE
ANALYSIS

Database Server
(MysaL)

Fig. 11. An Experimental testbed.

We have performed some experiments in order to develop
a performance model for database server. The experiments
were performed in our testbed, consisting some number of
computers operating as a client and one MySQL database
server. An illustration of the testbed is shown in Fig. 11.
The computers used in the experiments are ordinary desktop
computers with some open source software installed. The
computer hardware is a Samsung HD 502 HIJ. It is equipped
with a 3.10 GHz i3 Intel Celeron processor, 4 GB main
memory and Gigabit Ethernet network Interface. The Windows
XP is running on the ordinary computers. One computer has
a MySQL server installed.

Table 1. Simulation parameters

Parameters Value

CPU Intel Celeron i3 3.10GHz
Operation system Windows XP

Installed memory (RAM) 1 sec

Experiments run time 1-2 hours

Data rate per Stream 200 [tuples/sec]

A. MySQL database monitor and Adviser

For monitor the performance of MySQL database server has
been used special software called "MONyog (for Windows)”
(Fig. 12). The MONyog software helps MySQL DBAs to
manage more MySQL servers, tune their current MySQL
servers and find and fix problems with their MySQL database
applications before they can become serious problems of

271

costly outages. Moreover MONyog software effectively moni-
tors database environments and provide expert advice on how
to optimize performance of database and reduce number of
unnecessary connection between tables. The MONyog can
continuously monitor queries in real-time and send notifica-
tions for queries that take more than a specified amount of
time to execute.

Morisors BealTorm | Dutbomnd racassiist Aeplicain Cueg dnsyeer | SamerCordy Dokl Fourts Waphack bachine

Semans [v] Pl oo v pes s

Test Serar

New sesgion” ["

1
B Pace eriing i
H
3

P R - S

0 seLecrs I iR I LPDATE: B DELETES
Top queries and objects

e e e e e T

Showsan 200 queries Sggegation PROCESS ST

Query Bvecution Time.

T e Fimsaen lmtem Ovew Aciors
Towd Lo3s M
. : smun
Pom| TR 170 el i
o5 S 1412
W0 LD 1200 deebperdio =

00W0 moeglocaine:

Eep 1412
20213
[TE .
305
2 s a1z
125%09
[T I
130541
Sop 17,

o200

SHOWFULL PROCESSLIST

Fig. 12. MONyog software.

B. Implementation result

Before the query request process started, all connection to
the server was set up and MySQL monitoring software was
initialized to ready to go. The result of information send by
MySQL database system using general MOMAT approach is
given in Fig. 13.

ey
8 oresek
k

sssz6K

o

X 7 X

2023

13)im 13 Jur 13 jn 3jn 13 13 ur 13 Jun 13 us 13 un
2u3H0 28 2544 2532656 2% 22813 283 s £H33145 20 3328 2333009 2533520

| 8 sere 0 receivea |

Fig. 13. Amount of information is send by MySQL using
general approach

73.202€
o 48.825K
= 2aa1ak

o

13jun 13jun 3Jun
27 6:24:49 2T 6:25:20 2% 6:25:50 2

Fig. 14. Amount of information is send by MySQL using
query-split management scheme approach

Based on Figures 13 and 15 we can predict that if each
application request 2000 tuples in one time the amount of in-
formation send will be huge and workload of central database
system significantly increase. Furthermore, the CPU utilization
in server node compering with normal system is higher. In
case of proposed approach (Fig. 14), server node utilizes less
resource to distribute information to the nodes compering with
Fig. 13.

Global status variables.

Value Value
Name = (Jun 13 2013 02:30:00) (03:30:09) G

Bytes_received 2257091 2862062 +604971

Bytes_sent 114730483 146188583 +31458100

Com_select 14724 18770 ~4046
Com_set_option 7366 9300 +2024
Com_show_databases 7361 9384 ~2023
Com_show_master_status 7361 9384 +2023
Com_show_processlist 71 72 -1

Com_show_status 7378 9401 +2023
Com_show_variables 7364 9387 ~2023
Connections 931 932 +1

Fig. 15. Total amount of information (bytes) send by nodes
using general approach

Global status variables

Value Value
Name - (Jun 132013 05:35:19) (06:36:19) EE

Bytes_received 204956 283268 +678312

Bytes_sent 10706325 46043447 +35337122

Com_select 1380 5031 4551
Com_set_option 691 2969 +2278
Com_show_databases 620 2964 <2075
Com_show_master_status 689 2954 +2275
Com_show_processlist 0 2 <2

Com_show_status 690 2965 +2275
Com_show_variables 690 2965 <2075
Connections 3 6 3

Page 1 of4 | (m View 1-10 0134

Fig. 16. Total amount of information (bytes) send by nodes
using query-split management scheme

Figures 15 and 16 show total amount of information (bytes)
when data retrieval is performed by each application. Comper-
ing with Fig. 15 which uses general approach, Fig. 16 utilizes
less resource to obtain information form database system.

V. CONCLUSION AND FUTURE WORK

The purpose of this paper is to develop a scalable object-
oriented middleware continuous query system using a labeling
method to split the query into small groups. The previous
version of MOMAT, MDMS (Message Definition and Man-
agement System) [8] considers only a limited number of
modeling tools for developers to design the naval combat
system. Furthermore, MOMAT is not able reach high scalable
in case of big number of queries. To solve this issue, we
propose “query-split” methodology that split the input queries
into small groups to make the system more scalable. We
also implemented new powerful user interface to MOMAT
which has many options to model publish-subscribes message
process.

For future work, we plan to concern about QoS feature in
MOMAT. In addition, this paper plans to measure workload
of each application considering the application execution time
and maintenance.

ACKNOWLEDGMENTS

This research was financially supported by the Ministry
of Education, Science Technology (MEST) and National

272

Research Foundation of Korea (NRF) through the Human
Resource Training Project for Regional Innovation 2013.

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (NO. 2011-0025409).

REFERENCES

[1] D.-S. Kim, Y. S. Lee, and H. S. Park, “Maximum allowable delay bounds
of networked control systems,” Control Engineering Practice, Elsevier,
vol. 11, no. 11, pp. 1301-1313, 2003.

[2] H. Arciszewski, T. de Greef, and J. van Delft, “Adaptive automation in a
naval combat management system,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 39, no. 6, pp. 1188-1199, 2009.

[3] D.-S. Kim and S. Lee, “Feasibility analysis of hybrid control networks
based on common industrial protocol,” Computer Standards & Interfaces,
Elsevier, vol. 33, no. 4, pp. 357-366, 2011.

[4] W.R. Otte, A. Gokhale, D. C. Schmidt, and J. Willemsen, “Infrastructure
for component-based dds application development,” in Proceedings of
the 10th ACM International Conference on Generative Programming and
Component Engineering, 2011, pp. 53-62.

[S] W. Kang and S. H. Son, “Data services in distributed real-time embedded
systems,” 2008.

[6] “Concurrent versions system,” http://en.wikipedia.org/wiki/Concurrent_
Versions_System.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Niagaracq: A scalable
continuous query system for internet databases,” in SIGMOD Conference,
2000, pp. 379-390.

[8] J. Y. Yu and J. Park, “A massage management for cooperative message-
based interface development,” in Journal of Korean Insitute of Information
Scientists and Engineers, 2008, pp. 639-613.

273

